
Affinity-Aware Checkpoint Restart

Ajay Saini, Arash Rezaei, Frank Mueller
North Carolina State University

Raleigh, NC
mueller@ncsu.edu

Paul Hargrove, Eric Roman
Lawrence Berkeley National Laboratory

Berkeley, CA
{phhargrove, eroman}@lbl.gov

ABSTRACT
Current checkpointing techniques employed to overcome faults
for HPC applications result in inferior application perfor-
mance after restart from a checkpoint for a number of ap-
plications. This is due to a lack of page and core affinity
awareness of the checkpoint/restart (C/R) mechanism, i.e.,
application tasks originally pinned to cores may be restarted
on different cores, and in case of non-uniform memory archi-
tectures (NUMA), quite common today, memory pages asso-
ciated with tasks on a NUMA node may be associated with
a different NUMA node after restart. This work contributes
a novel design technique for C/R mechanisms to preserve
task-to-core maps and NUMA node specific page affinities
across restarts. Experimental results with BLCR, a C/R
mechanism, enhanced with affinity awareness demonstrate
significant performance benefits of 37%-73% for the NAS
Parallel Benchmark codes and 6-12% for NAMD with negli-
gible overheads instead of up to nearly four times longer an
execution times without affinity-aware restarts on 16 cores.

Categories and Subject Descriptors
D.4.5 [Reliability]: Checkpoint/Restart—Fault Tolerance

General Terms
Reliability, Efficiency

Keywords
Checkpoint and restart, fault tolerance, multi-core, NUMA,
system software

1. INTRODUCTION
With the recent rise in the number of processing cores on

HPC systems (10,000s or even 100,000s of processing cores),
faults are becoming common. The mean time between fail-
ures (MTBF) / interrupts (MTBI) is in the range of 6.5-50
hours depending on the maturity / age of HPC installa-
tions [25]. Several approaches have been studied to enable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org
Middleware ’14 December 08 – 12 2014, Bordeaux, France
ACM 978-1-4503-2785-5/14/12 ...$15.00.
http://dx.doi.org/10.1145/2663165.2663325.

fault tolerance in an HPC environment. One of the widely
used methods is Checkpoint/Restart (C/R). It involves sav-
ing the context of a job/application at regular intervals and
restarting the application from a saved context if a failure
occurs. Such an approach saves significant time because we
do not have to start the job from scratch. A large number of
checkpoint-restart utilities have been developed, each with
its own advantages [21].

Another notable development attributed to the increase
in the number of cores is an accelerated shift towards dis-
tributed non-uniform memory access (NUMA) architectures.
Such architectures consist of collections of computing cores
with fast local memory, communicating with each other via
a slower inter-chip communication medium. Access by a
core to the local memory, and in particular to a shared local
cache, can be several times faster than access to the remote
memory or cache lines resident on another chip.

Several applications developed for such HPC environments
take advantage of this non-uniform memory arrangement.
Applications, at times, are started with their threads pinned
to particular cores. This preserves both thread-to-core affin-
ity and data-to-NUMA node (page-to-NUMA node) affin-
ity. Judicious bindings can improve performance by reduc-
ing resource contention (by spreading processes apart from
one another), reducing migration overheads and NUMA re-
mote memory access penalties (by reducing excessive process
movement), or improving inter-process communications (by
placing processes close to one another). Figure 1(a) shows
an application with 4 threads pinned to particular cores.
But when the same application is executed without pinning
(Figure 1(b)), its threads can migrate both locally (within a
NUMA node) or remotely (to another NUMA node). Such
migrations might result in overheads as a thread might be
moved away from ”hot” caches or local NUMA memory.

There are various real world scenarios where pinning is
beneficial, especially for applications which are sensitive to
such placement. For example, Dice et. al [6] talk about
the benefits of NUMA aware locks. Even Operating System
(OS) process schedulers have inbuilt intelligence to reduce
migrations, and their memory allocators are NUMA aware
such that data is allocated on a local NUMA node where a
thread is running.

Considering these two locality aspects, affinity awareness
and checkpoint restart, performance suffers when an affin-
ity sensitive application is checkpointed and later restarted
using existing C/R techniques. Existing C/R techniques do
not take affinity information into account. Even if we start
an application with its threads pinned as in Figure 1(a),

Core0 Core1

 Local Memory

NUMA 0

Core3 Core2

Core0 Core1

 Local Memory

NUMA 1

Core3 Core2

thread1

thread2

thread3

thread4

(a) Application threads pinned to CPU cores

Core0 Core1

 Local Memory

NUMA 0

Core3 Core2

Core0 Core1

 Local Memory

NUMA 1

Core3 Core2

Remote migration

local migration

thread1

thread2

thread3 thread4

(b) Application threads not pinned resulting in migrations
Figure 1: Effects of pinning and no-pinning

when such an application is restarted from a checkpoint, we
might end up with thread-to-core mapping as in Figure 1(b)
since pinning is not preserved. This is the problem we target
in this paper: How can we ensure that affinity information
is preserved across restarts?

Contributions

When we restart an application from a checkpoint, we want
that application to exhibit the same affinity behavior it had
before the checkpoint. We present a novel approach to save
and restore affinity information. We have implemented our
design in BLCR [7], enhancing it to affinity-aware BLCR.
BLCR is a hybrid checkpoint restart mechanism for Linux
and is implemented as a kernel module with a user level
library. With our enhancements and through configurable
options, applications can be checkpointed and restarted with
affinity awareness, both thread-to-core and page-to-NUMA
node affinity. Applications that are sensitive to CPU core
pinning and NUMA memory placement experience signifi-
cant benefits when using the affinity-aware BLCR. An eval-
uation of the benefits of our enhancements shows perfor-
mance improvements ranging from 37% to 73% in applica-
tion execution time for NAS Parallel Benchmark (NPB) and
6-12% for NAMD after restart compared to using the origi-
nal BLCR on 16 cores. Without affinity awareness, restarts
would have resulted in up to nearly four times longer ex-
ecution times. To the best of our knowledge, we are first
to implement such affinity awareness in a checkpoint restart
mechanism.

The paper is organized as follows: Section II discusses the
design of the original BLCR and presents our affinity-aware
design. Section III provides the implementation details. In
Section IV, we discuss our results. Section V compares this
work to related work. Section VI presents our conclusions.

2. DESIGN
In this section, we present a high-level overview of the

BLCR design before focusing on our enhancements for affin-
ity awareness. For a detailed description of the BLCR de-
sign, see [7].

BLCR is implemented as a Linux kernel module com-
bined with a user-level shared library. An application can
be checkpointed (i.e., its current state is written to a file)
and restarted from a checkpoint file. Figures 2 and 3 show

the checkpoint and restart flow along with a table of actions
taken at each step. The table shows actions common to both
implementations (the original BLCR and the affinity-aware
BLCR) as well as actions taken individually. Time flows
from top to bottom in each diagram. Activities performed
in the checkpoint restart flow are represented by numbers
and described in the right halves of the figures.

In the following, we first discuss the checkpoint and restart
flow of the original BLCR. Then we describe our enhance-
ments and present the checkpoint and restart flow of our
affinity aware BLCR. We use a running example of an ap-
plication with three threads in our description.

2.1 Original BLCR Checkpoint-Restart Flow

2.1.1 Checkpoint flow

When a checkpoint request is triggered, it results in the
following sequence of actions (see Figure 2):

Step1: After the initialization phase, one of the appli-
cation threads is selected as a group leader and the other
threads wait for a wake-up signal from the group leader.

Step2: The leader thread records parent/child relation-
ships and then reaches a barrier to wake up other threads.
All threads then return from this barrier to reach another
barrier.

Step3: While the other threads wait, the leader thread
records its process id, register contents and signals. It then
saves shared items, including dirty pages, virtual memory
maps, mmaped files and protection flags in the checkpoint
file. On reaching another barrier, it wakes up the other
threads and waits for them to complete.

Step4 and Step5: All threads save their private data
including process id, register contents and signals.

Step6: After all threads have reached the final barrier,
they return from kernel space and the application continues.

2.1.2 Restart flow

Restarting from a checkpoint is largely the inverse of the
checkpoint process. A restart request results in the following
actions (see Figure 3):

Step1: Once the initialization phase is completed, the
restart process performs an ioctl() call, which causes the
process to be forked. The parent process returns to user
space and waits for the restart to complete. The child is
cloned as many times as there were threads in the original

application that is being restarted. One thread is selected
as group leader, and the other threads wait for a wake up
signal from the leader thread.

Step2: The leader thread loads its register contents and
signals. It unmaps the existing virtual memory areas and
then remaps them based on the information stored in the
checkpoint file. It loads the shared items including dirty
pages and uses kernel support (sys mprotect in the Linux
kernel) to restore protection flags. The leader thread then
reaches a barrier to wake up other threads and waits for
them to complete.

Step3 and Step4: All other threads reload their private
data including registers and signals.

Step5: After all threads reach a barrier, the leader thread
locks the kernel process table and restores the parent child
relationship while the other threads wait. It then reaches a
barrier, where it wakes up the other threads and waits for
them to complete.

Step6: After all threads have reached the final barrier,
they return from kernel space, i.e., the application is restarted
and resumes normal execution.

2.2 Saving and Restoring Affinity Information
The checkpoint and restart flow described in the previous

section does not consider affinity information, i.e., thread-to-
core and page-to-NUMA node mappings while checkpointing
and restarting an application. To save and restore this affin-
ity information, we considered various design approaches.

For thread to core affinity, we prototyped (1) a brute force
approach, wherein we extract and save the cpumask for each
thread during checkpointing. During restart, we directly
overwrite the cpumask of each thread with the saved one.
This provisionally works on Linux, but may constrain porta-
bility as the state of a thread is modified without the kernel’s
knowledge. (2) We also tried to provide affinity information
at the time of calling the clone function (during restart). But
the Linux clone API lacks such a flag. We decided to im-
plement a modification of the brute force approach. Instead
of directly overwriting the cpumask, we use kernel support
to change the cpumask, making the method portable and
kernel aware.

For page-to-NUMA node affinity, we prototyped (1) an
approach to save the NUMA node id of pages while check-
pointing. During restart, we use kernel support to migrate
pages to appropriate NUMA nodes. On Linux, this method
requires calls to unexported kernel functions from a kernel
module and access to userspace buffer, both of which are not
easily supported. Furthermore, this approach would have
page migration overheads. (2) Another approach was to di-
vide the work of saving/loading pages among threads. This
method was based on the fact that most of the operating
systems, today, are NUMA aware, i.e., their memory alloca-
tor assigns pages to the local NUMA node where the thread
is running using the first touch policy [14]. This approach
does not inflict migration overheads. We used the second
approach. The first approach was prototyped at the design
level and then discarded for two reasons:

• It required duplication of significant Linux kernel code
snippets with slight variations, which would have made
it harder to maintain the code as the Linux kernel is
changed in the future.

• All data would first be located on one NUMA node

of the first thread upon restart before being migrated
to their original NUMA nodes. This migration incurs
additional overhead compared to our second approach
where pages are placed on their original NUMA node
right away when loaded.

2.3 Affinity-Aware BLCR Flow
With the above design schemes, we modified steps 3, 4

and 5 of BLCR’s checkpoint flow. Correspondingly, to use
this new stored information, we modified steps 2, 3 and 4 of
the restart flow.

2.3.1 Checkpoint flow

A checkpoint request results in the following actions (see
Figure 2):

Step1 and Step2: The same as earlier.
Step3: The leader thread, saves its process id, registers

and signals. It also saves its cpumask. It then saves shared
items, including virtual memory maps, mmaped files and
protection flags, but only those dirty pages that belong to
its local NUMA node. It then reaches a barrier where it
wakes up other threads and waits for them to complete.

Step4: The other threads save their private data, includ-
ing process id, registers and signals. Now, each thread also
saves its cpumask and those dirty pages that belong to its lo-
cal NUMA node, if these pages have not already been saved
by another thread belonging to the same NUMA node. To
maintain the original design flow and to account for the ac-
tions to be taken during restart, virtual memory maps and
protection flags are also saved without incurring significant
impact on the checkpoint file size.

Step5: The last thread, in addition to saving the same
items as the other threads, also saves those pages that be-
longs to a NUMA node on which none of the threads are
running (which we refer to as the orphan NUMA node).

Step6: The same as earlier.

2.3.2 Restart flow

A restart request results in the following actions (see Fig-
ure 3):

Step1: The same as earlier.
Step2: The leader thread loads the register contents, sig-

nals and cpumask. If cpumask is not equal to its current
cpumask, it resets it using kernel support. It then unmaps
the existing virtual memory areas and remaps the virtual
memory areas using the stored information in the checkpoint
file. It loads its saved pages. As the thread is running as per
the original cpumask and, due to NUMA awareness of the
memory allocator, pages are allocated on the same NUMA
nodes that they were on before the checkpoint. The saved
protection flags are not restored here. The leader thread
then reaches a barrier where it wakes up other threads and
waits for them to complete.

Step3: The other threads load their private data, includ-
ing registers, signals and cpumask. Kernel support is needed
to reset the cpumask. Then, the saved pages are loaded, and
the pages are allocated on the correct NUMA nodes.

Step4: The last thread additionally brings the pages be-
longing to orphan NUMA nodes to its local NUMA memory
and restores the protection flags saved during checkpointing,
for each of the virtual memory maps.

Step5 and Step6: The same as earlier.

 Application
1

 BARRIER

 BARRIER

 BARRIER

Checkpoint
initiated

Return from
kernel space

leader thread

thread2 thread3 thread1

2

3

leader thread

4
other threads

5

thread2 thread3 thread1
6

last thread

(a) Checkpoint flow diagram

Steps Actions common to both
implementations of
checkpoint

Actions
performed only by
original BLCR
checkpoint

Actions performed only by
affinity-aware BLCR
checkpoint

1 Checkpoint
initiated

2 leader thread records
parent/child relationship

3 leader thread records
pid, registers, signals,
shared items - mmaps,
files, protection flags

leader thread
saves all dirty
pages

leader thread saves
cpumask, dirty pages on
local NUMA node only

4 other threads record pid,
registers, signals.

other threads record
cpumask, VM maps,
protection flags, dirty pages
on local NUMA node

5 last thread records pid,
registers, signals.

last thread saves cpumask
VM maps, protection flags,
dirty pages on local +
orphan NUMA node

6 Return from kernel space

(b) Table of actions taken during checkpoint
Figure 2: Checkpoint flow

 BARRIER

 BARRIER

 BARRIER

 do_fork()

 Restart

clone()

thread1 thread2 thread3

 Restart

2 leader thread

3
other threads

4
last thread

5 leader thread

1 Restart
Initiated

 Restart thread1 thread2 thread3

6

Return from
kernel space

(a) Restart flow diagram

Steps Actions common to both
implementations of
restart

Actions performed
only by original
BLCR restart

Actions performed only
by affinity-aware BLCR
restart

1 Restart initiated

2 leader thread loads pid,
registers, signals, unmaps
VMA’s and loads saved
VMA’s, files.

leader thread loads
all the pages as it
saved all of them,
restores protection
flags.

leader thread restores its
cpumask, loads local
NUMA saved pages

3 other threads load pid,
registers, signals

other threads restore
their cpumask and load
local NUMA saved pages

4 last thread loads pid,
registers, signals

last thread restores its
cpumask and loads local +
orphan NUMA saved
pages, restores protection
flags.

5 leader thread restores
parent/child relationship

6 Return from kernel space

(b) Table of actions taken during restart
Figure 3: Restart flow

3. IMPLEMENTATION
We implemented our enhancements in BLCR on Linux.

We took the following issues into consideration during our
implementation. First, no changes should be made to the
Linux kernel code. Second, implemented features of BLCR
like synchronization should be reused to keep the changes to
a minimum. Third, new updates should be flexible, i.e., they
can be turned on/off via command line parameters and/or
environment variables.

3.1 Saving and Restoring Thread-to-Core Affin-
ity

To save and restore thread-to-core affinity, we need kernel
support to access this affinity information during checkpoint
and reset it during restart. In the Linux kernel, CPU affinity
is saved in the cpumask of a Task Control Block (TCB) of a
thread/process. While checkpointing, we save this mask in
the checkpoint file. During restart, we read this mask and

then utilize the Linux kernel call

i n t s e t c p u s a l l o w e d p t r (
s t r u c t t a s k s t r u c t ∗p ,
const s t r u c t cpumask ∗new mask)

to reset the cpumask if the current mask is not equal to the
saved one. This places the thread as per the new mask on
the original CPU core.

3.2 Saving and Restoring Page-to-NUMA Node
Affinity

To save and restore page-to-NUMA node affinity, we rely
on the first touch policy of Linux memory allocator, which
assigns pages on the local NUMA node where the thread is
running. In order to implement it, we need two pieces of
information: (1) which NUMA node does a thread belong
to and (2) which NUMA node does a page belong to. We
utilize the kernel call

i n t numa node id (void)

to inquire which NUMA node the current thread is running
on. To obtain the page-to-NUMA node mappings, we need
page table information. BLCR already implements a page
table walk to extract page information given a virtual ad-
dress. We utilize it to determine the page address and then
use the kernel call

i n t page to n id (const s t r u c t page ∗page)

to determine the NUMA node of a page. Based on these two
pieces of information, each thread only stores pages that be-
long to its local NUMA node. To avoid duplicate savings of
pages, we use a flag array to keep track of NUMA nodes for
which (potentially shared) pages have already been saved.
Each thread consults this array before saving a page. The
last thread additionally saves the leftover pages allocated
on a NUMA node on which none of the threads are run-
ning (orphaned NUMA node). During restart, each thread
starts loading pages after it has been rescheduled as per
saved CPU affinity. Thus, each thread loads pages (utilizing
the first touch memory policy) on the correct NUMA node
maintaining the page-to-NUMA node affinity.

We have added support for environment variables and
command line parameters to turn on/off these features. We
have also added an additional environment variable to op-
tionally reset the CPU affinity of the threads during restart.
This allows threads to optionally be moved to a different set
of CPU cores after restart, should the user desire such differ-
ent mappings. This might be desirable if mixed workloads
are run on nodes so that only different cores are available
on restart.

4. RESULTS

4.1 Experimental Framework
Experiments were conducted on a node in a local clus-

ter comprised of 108 compute nodes with 1728 cores. All
machines are 2-way SMPs with AMD Opteron processors,
eight 2GHZ cores per socket (16 cores per node) and four
NUMA nodes (4 cores forming one NUMA node). Linux
x86 64 version 2.6.32.27 is installed on each of the machines.
The memory hierarchy consists of three levels of cache, L1
(64KB), L2 (512KB), L3 (5MB), and a 32GB RAM.

We used the OpenMP version of the NPB (NAS Parallel
Benchmarks) suite [3], [10] (version 3.3) for our experiments.
The NPB features a set of programs, BT, SP, LU, IS, FT,
MG, CG, EP, DC and UA, designed to help evaluate the per-
formance of parallel supercomputers. The benchmarks are
derived from computational fluid dynamics (CFD) applica-
tions and originally consisted of five kernels (IS, FT, MG,
CG, EP) and three pseudo-applications (BT, SP, LU). These
five kernels mimic the computational core of five numerical
methods used by CFD applications. The simulated CFD ap-
plications reproduce much of the data movement and com-
putation found in full CFD codes. The benchmark suite
has been extended to include two new benchmarks (UA,
DC) for unstructured adaptive mesh, parallel I/O, multi-
zone applications, and computational grids. We conducted
experiments with BT, SP, LU, IS, FT, MG, CG, and UA.
Others (SP, DC) did not have enough iterations to perform
checkpoints/restarts.

We provide results for a real world application, NAMD
[20], which was reported to result in longer runtimes after

restarts by a user of BLCR. NAMD is a parallel molecular
dynamics code designed for high-performance simulation of
large bio-molecular systems. It scales to hundreds of proces-
sors on high-end parallel platforms as well as tens of proces-
sors on low-cost commodity clusters, and also runs on indi-
vidual desktop and laptop computers. It is implemented in
C++ and based on Charm++ parallel objects [11].

We also present an analysis of affinity-aware BLCR for
benchmarks/applications that are not sensitive to thread-
to-core or page-to-NUMA node mappings. We observed the
LULESH [12] benchmark to be one such example. LULESH
is a highly simplified kernel of an application, hard-coded
to only solve a simple Sedov blast problem. LULESH ap-
proximates the hydrodynamics equations that describe the
motion of materials relative to each other when subjected to
forces.

4.2 Experiments
Experiments were conducted to assess (1) application ex-

ecution time after restart from a checkpoint file, our major
target area, (2) checkpoint file size overhead, (3) checkpoint
time overhead, and (4) restart time overhead.

The input size for NPB codes can be configured as per
different classes. We used CLASS C data inputs for our
experiments as they had longer execution times and resulted
in larger checkpoint files representative of HPC workloads.
While collecting data, we tried to remove background noise
by starting with a fresh node (usually restarting that node)
and fixing the CPU frequency for each of the cores to 2GHz
before conducting our experiments.

We instrumented the NPB codes to initiate a checkpoint
at a particular iteration count after initialization as shown
in Table 1. The first column in Table 1 lists the NPB codes,
the second column shows the total iterations in the complete
run of that benchmark and the third column shows the it-
eration number after which the checkpoint was initiated. In
selecting an iteration to checkpoint at, we tried to ensure a
sufficiently long execution time after restart. This allowed us
to assess if execution time varies after restart over time due
to affinity effects. Our experiments actually show that no
such variation was observed, i.e., restarting from checkpoint
resulted in similar performance irrespective of the remaining
work.

During experiments with each benchmark, we took five
different checkpoints at the same iteration count. Each
checkpoint was restarted two times. This was done both
for the original BLCR and the affinity-aware BLCR. The
results presented next report average values of these runs.
The percentage change between results of the original BLCR
and the affinity-aware BLCR was calculated using the fol-
lowing formula:

(OriginalBLCR Time − AffinityAwareBLCR Time)
OriginalBLCR Time

× 100
The standard deviation of the results presented in this

section is less than 3% except for one case. For this case, we
depict standard deviation as min/max values through error
bars in graph (see below).

4.3 Performance
Figure 4 depicts the execution time of the NPB codes after

restart from a checkpoint file using the original BLCR and
the affinity-aware BLCR (AA-BLCR). Figure 4(a) depicts
results when each of the NPB codes are configured to run
with 16 threads. Figure 4(b) depicts results for 8 threads.

(a) 16 Threads

(b) 8 Threads
Figure 4: NPB codes (CLASS C) Execution Time after Restart (excl. Restart Time)

(a) 16 Threads (b) 8 Threads
Figure 5: NPB codes (CLASS C) # CPU Migrations after Restart

The x-axis depicts each of the NPB codes and the y-axis
depicts the average execution time after restart in seconds.
This execution time excludes the time taken by BLCR to
restart the application. Due to the large range in the data
values, the graph is split into two parts. Benchmarks FT,
MG, IS are depicted in the left half and BT, SP, LU, CG,
UA are depicted in the right halves of Figures 4(a) and 4(b).
Table 2 depicts the percentage change between the original
BLCR and the affinity-aware BLCR for different parame-

ters using 16 threads. The first column lists the NPB codes
and the second column shows the percentage change in the
application execution time after restart. Table 3 depicts
these measurements for 8 threads. We observe significant
improvements when using the affinity-aware BLCR for both
thread configurations. The application execution time, af-
ter restart, improves between 37% and 73% for 16 threads
(Table 2 second column) and between 18% and 46% for 8
threads (Table 3 second column). For 16 threads, this means

(a) 16 Threads (b) 8 Threads
Figure 6: NPB codes (CLASS C) Avg. Execution Time per Iteration before+after Checkpoint for AA-BLCR / Original-BLCR

Table 1: Total # Iterations / Last Iteration before Check-
point

NPB Total # Iterations Checkpoint Iteration

BT 200 10

SP 400 10

FT 20 2

MG 20 2

LU 250 10

CG 75 10

UA 200 10

IS 10 2

applications would result in roughly 1.6 times to nearly four
times longer execution than before checkpointing unless the
restart was affinity aware.

In case of the original BLCR, affinity information is not
saved and only the leader thread restores the memory in-
formation. This causes all the data to be allocated locally
to a single NUMA node (the node the leader thread is run-
ning on), unless the leader thread scatters data over differ-
ent NUMA nodes when occasionally migrated by the OS
scheduler. When the application is restarted, threads may
be scheduled to run on any core but when they try to ac-
cess data, they suffer from NUMA remote memory access
delays in addition to migration overheads, which causes the
observed performance degradation. In case of the affinity-
aware BLCR, affinity information is restored and no NUMA
access delays and migrations are incurred. These observa-
tions are reflected in Figures 5 and 6. Figure 5 depicts the
total CPU migrations for the application after restart for the
original BLCR and the affinity-aware BLCR on the y-axis
for each NPB code on the x-axis. The min/max values for
each of these cases are shown as error bars. The migrations
event of the perf stat command was used to obtain CPU mi-
gration numbers. Figure 5(a) depicts results for 16 threads
and Figure 5(b) for 8 threads. Due to the large range in the
data values, the y-axis is divided into two intervals as shown
in Figures 5(a) and 5(b). We observe a large reduction in
CPU migrations for the affinity-aware BLCR as thread-to-
core maps are restored. Table 2 (third column) depicts the
percentage change in CPU migrations for 16 threads and
Table 3 (third column) for 8 threads. There are still some
migrations that are attributed to migrations before thread-
to-core maps are restored.

Figure 6 depicts the average execution time per iteration

before initiating a checkpoint and after the restart from the
checkpoint for the original BLCR and the affinity-aware
BLCR on the y-axis for each NPB codes on the x-axis.
As can be observed, execution time of each iteration in-
creases after restart in case of the original BLCR whereas
it remains the same as before checkpointing for the affinity-
aware BLCR. Table 2 (fourth column) depicts the percent-
age change ranging from 37%-73% in the average execution
time per iteration after restart for 16 threads and Table 3
(fourth column) for 8 threads. This performance change is
the most significant result as it is independent of the time
at which a checkpoint is taken, i.e., the amount of saved ex-
ecution time can be extrapolated if the remaining number
of iterations is known.

We observe that MG, LU, CG and UA show higher im-
provement in the application execution time after restart
compared to other NPB codes. They show an average re-
duction of more than 60% in the average execution time per
iteration and in the number of CPU migrations after restart.
Although BT, SP and FT show large reductions in CPU
migrations, the overall performance improvement in execu-
tion time after restart is comparatively smaller. This can
be attributed to an interesting observation from the second
and the fourth columns of Tables 2 and 3: The percentage
change in the application execution time after restart (sec-
ond column) is equal to the percentage change in the average
execution time per iteration after restart (fourth column).
An application showing higher improvement in the average
execution time per iteration also shows higher improvement
in the execution time as a whole after restart. With this ob-
servation, we can infer (by process of elimination) that the
reduction in the average execution time per iteration after
restart (due to reduction in remote memory references) has a
dominant impact on the application performance compared
to a lower impact due to the reduction in CPU migrations
after restart.

4.4 Overheads
Let us consider some of the overheads one would expect

in affinity-aware BLCR.

4.4.1 Checkpoint file size

Figure 7 depicts the checkpoint file size in MB on the y-
axis and the NPB codes on the x-axis. Results are shown for
16 threads (Figure 7) and are nearly the same for 8 threads

Table 2: % Change Affinity-Aware BLCR vs. Original
BLCR for 16 Threads
NPB change

app
time
after
restart
(%)

change
CPU mi-
grations
after
restart
(%)

change
avg.
time /
iteration
after
restart
(%)

change
check-
point
file size
(%)

change
check-
point
time
(%)

change
restart
time
(%)

BT 46.35 93.79 46.38 0.13 -0.31 -1.33

SP 49.23 71.78 49.12 0.12 -1.74 -0.14

FT 48.49 81.41 48.50 0.02 -0.20 -0.20

MG 73.95 86.42 73.97 0.04 -10.95 0.14

LU 71.97 80.07 72.12 0.16 -11.68 -10.57

CG 70.10 61.08 70.03 0.10 -0.81 0.02

UA 64.52 63.95 64.64 0.20 -3.90 -1.82

IS 37.70 27.70 37.32 0.07 -0.85 -0.12

Table 3: % Change Affinity-Aware BLCR over Original
BLCR for 8 Threads
NPB change

app
time
after
restart
(%)

change
CPU mi-
grations
after
restart
(%)

change
avg.
time /
iteration
after
restart
(%)

change
check-
point
file size
(%)

change
check-
point
time
(%)

change
restart
time
(%)

BT 26.84 76.25 26.85 0.07 -1.29 -0.17

SP 41.05 89.33 41.06 0.06 -1.34 -0.23

FT 22.71 48.10 22.72 0.01 -0.12 -0.19

MG 46.22 57.54 46.15 0.02 -6.11 -0.12

LU 34.83 86.63 34.82 0.08 -1.63 -1.23

CG 37.36 68.91 37.44 0.05 -0.51 -0.58

UA 43.99 86.42 43.97 0.11 -1.48 -0.34

IS 18.72 16.78 18.50 0.04 0.39 -0.26

(graph omitted) since each thread only adds a few KB data
to traces of many MBs. We observe that file sizes are almost
the same for both the original BLCR and the affinity-aware
BLCR. Table 2 (fifth column) shows the percentage change
in the checkpoint file size for 16 threads and Table 3 (fifth
column) shows the results for 8 threads. In this case, per-
centages indicate overheads incurred by our method. We
observe a size difference of around 1 MB between the check-
point file with the original BLCR vs. the checkpoint file
with the affinity-aware BLCR. The difference in the file size
is due to the affinity-aware BLCR storing with each of the
threads some meta information, including virtual address
maps, protection flags, start and end marker and other in-
formation pertinent to the BLCR framework. A difference of
1MB is not significant considering that checkpoint file sizes
are in the order of 100s of MBs or even GBs.

Figure 7: NPB codes (CLASS C) Checkpoint File Size for
16 Threads

4.4.2 Checkpoint time overhead

Table 4: NAMD Executing Time [hours] for 16 Threads
config file app time

after
5000th
iter w/o
C/R (hrs)

app time af-
ter 5000th
iter on
restart AA-
BLCR (hrs)

app time af-
ter 5000th
iter on restart
Original-BLCR
(hrs)

% change time
AA-BLCR
vs. Original-
BLCR

apoa1.namd 16.10 16.12 17.18 6.17%

npt55.inp 18.42 18.40 21.00 12.38%

Table 5: NAMD Executing Time [hours] for 8 Threads
config file app time

after
5000th
iter w/o
C/R (hrs)

app time af-
ter 5000th
iter on
restart AA-
BLCR (hrs)

app time af-
ter 5000th
iter on restart
Original-BLCR
(hrs)

% change time
AA-BLCR
vs. Original-
BLCR

apoa1.namd 31.75 31.79 32.66 2.66%

npt55.inp 35.95 36.09 37.42 3.55%

Figure 8 depicts the checkpoint time for the original BLCR
and the affinity-aware BLCR. Figure 8(a) depicts results for
16 threads and Figure 8(b) for 8 threads. The y-axis denotes
the checkpoint time in seconds and the x-axis denotes the
NPB codes. Table 2 (sixth column) shows the percentage
change in the checkpoint time for 16 threads and Table 3
(sixth column) shows the results for 8 threads. As can be
observed, the difference between the checkpoint time is also
not significant.

4.4.3 Restart time overhead

Figure 9 depicts the restart time for the original BLCR
and the affinity-aware BLCR. Figure 9(a) depicts results for
16 threads and Figure 9(b) for 8 threads. The y-axis de-
notes the restart time in seconds and the x-axis denotes the
NPB codes. Table 2 (seventh column) shows the percent-
age change in the restart time for 16 threads and Table 3
(seventh column) shows the results for 8 threads. Similar
to the checkpoint time overhead, this difference is also not
significant.

Overall, the application execution time after restart and
the overheads in terms of the percentage change in Tables
2 and 3 show that we obtain a significant performance im-
provement in application execution time with affinity-aware
BLCR compared to the original BLCR with only minimum
overheads.

4.5 NAMD Results
As a case study, we investigated the benefits of using the

affinity-aware BLCR over the original BLCR for the real
world application NAMD. We ran NAMD in a configuration
provided by a BLCR user (npt55.inp) and with a default
configuration file (apoa1.namd) from the NAMD sources.
The total number of iterations in each case was 500,000. We
checkpointed after 1,000 iterations. These values were cho-
sen just to match the user’s configuration for NAMD and
BLCR. NAMD outputs periodically (under a configurable
option) how much time is left for the application to com-
plete. We capture this value after 5,000 iterations in each
case. Tables 4 and 5 present results for 16 and 8 threads,
respectively. The first column of these tables show the con-
figuration files. The second column show the time left (in
hours) for the application to complete (after the 5000th it-
eration) without any checkpoint/restart. The third and the
fourth columns represent the time left (in hours) for applica-
tion to complete (after 5000th iteration) after restart using
the affinity-aware BLCR and using the original BLCR, re-
spectively. The fifth column represents the % improvement
of the affinity-aware BLCR over the original BLCR. We ob-

(a) 16 Threads (b) 8 Threads
Figure 8: NPB codes (CLASS C) Checkpoint Time

(a) 16 Threads (b) 8 Threads
Figure 9: NPB codes (CLASS C) Restart Time

serve that the affinity-aware BLCR (third column of Tables
4 and 5) maintains the same timing after restart as a run
without any checkpoint/restart (second column of Tables 4
and 5), whereas under the original BLCR (fourth column of
Tables 4 and 5), performance degrades by up to 12% after
restart. Notice also that performance degradation gets worse
under the original BLCR as the thread count (equal to core
count, i.e., one thread per core) increases. In other words,
the performance improvement by affinity-aware BLCR also
increases. This can be seen in the fifth column of Tables 4
and 5 when comparing the % performance improvement for
16 and 8 threads.

4.6 LULESH Benchmark Results
We also investigated the impact of affinity-aware BLCR on

benchmarks that might not be sensitive to affinity informa-
tion and/or that might actually suffer in performance when
threads are pinned to specific CPU cores. In some cases,
binding/pinning can degrade performance by inhibiting the
OS capability to balance loads.

We conducted experiments with the OpenMP version of
LULESH benchmark. In our experiments, we instrumented
LULESH to initiate a checkpoint at the 10th iteration. Ta-
ble 6 depicts the results for 16 threads and Table 7 for 8
threads. The first and the second columns show the input
parameters for LULESH, input size and total iterations, re-
spectively. The third column shows the average execution

time per iteration (in seconds) and the fourth column shows
the total application execution time (in seconds). In both
cases, thread-to-core pinning is not enforced and no check-
point/restart is initiated. The fifth and the sixth columns
show measurements similar to the third and fourth columns,
respectively, but with thread-to-core pinning enforced. The
seventh column shows the percentage change in the appli-
cation execution time after restart when using the original
BLCR and the affinity-aware BLCR.

When running LULESH with 16 threads, with and with-
out thread-to-core pinning but without checkpoint restart,
pinning showed only marginal benefits. This can be observed
by comparing the fourth and the sixth columns of Table
6. When using checkpoint restart, the affinity-aware BLCR
similarly showed marginal improvement over the original
BLCR (Table 6 seventh column). When running LULESH
with 8 threads, with and without thread-to-core pinning and
no checkpoint restart, pinning showed lower performance
compared to no pinning. This can be observed by compar-
ing the fourth and the sixth columns of Table 7. When
using checkpoint restart, the affinity-aware BLCR similarly
showed lower performance compared to the original BLCR
(Table 7 seventh column). One of the reasons for such re-
sults is that LULESH performs memory allocation and de-
allocation dynamically in each iteration. Hence, the data
used in one iteration is more or less independent of the data
used in earlier iterations. This is also evident in the average

Table 6: LULESH Execution Time [secs] for 16 Threads
Input
Size

total
it-
era-
tions

avg.
time /
iteration
unpinned
(sec)

total
app
time un-
pinned
(sec)

avg.
time /
iteration
pinned
(sec)

total
app
time
pinned
(sec)

% change
in app time
after restart
AA-BLCR
vs. Original-
BLCR

200 100 5.17 517.33 5.06 505.85 3.81%

200 200 5.22 1044.92 5.08 1015.91 4.56%

Table 7: LULESH Execution Time [secs] for 8 Threads
Input
Size

total
it-
era-
tions

avg.
time /
iteration
unpinned
(sec)

total
app
time un-
pinned
(sec)

avg.
time /
iteration
pinned
(sec)

total
app
time
pinned
(sec)

% change
in app time
after restart
AA-BLCR
vs. Original-
BLCR

200 100 6.80 680.23 7.00 700.16 -1.59%

200 200 6.85 1369.38 7.00 1398.03 -2.36%

execution time per iteration that changes only slightly, ir-
respective of whether or not the threads were pinned. This
is observed by comparing the third and the fifth columns of
Table 6 for 16 threads and Table 7 for 8 threads.

Based on these experiments, we conclude that applica-
tions sensitive to thread-to-core pinning and page-to-NUMA
node mappings will obtain significant benefits when using
the affinity-aware BLCR. But for other applications that
are not sensitive to such mappings, performance improve-
ments depend on how they themselves perform with and
without pinning. If they show some benefit with pinning,
the affinity-aware BLCR will also show a benefit. Other-
wise, one should revert to using the original BLCR for such
applications. To this end, including affinity awareness can
be enabled/disabled by command line arguments and envi-
ronment variables in our affinity-aware BLCR.

5. RELATED WORK
Checkpoint and restart as a tool for fault tolerance has

been well studied. There are several implementations of
checkpoint restart mechanisms, including user-level imple-
mentations, kernel-level implementations, and hybrid im-
plementations. Some of the implementations support in-
cremental checkpointing, some implement coordinated and
uncoordinated checkpoint-restart techniques, some support
checkpointing only single-threaded applications whereas oth-
ers support checkpointing multi-threaded applications. [21]
provides a survey of different checkpointing techniques.

DMTCP [2] (Distributed MultiThreaded CheckPointing)
is a transparent user-level checkpointing package for dis-
tributed applications. It can checkpoint multi-threaded ap-
plications. CryoPID [5] is an open source user-level imple-
mentation, which consists of a program called freeze that
captures the state of a running process and writes it into a
file. CRAK [26] is a transparent checkpoint/restart kernel
module for Linux. But CRAK cannot restart multithreaded
processes since it does not capture shared virtual memory
areas. BLCR [7], which we have used in our implementa-
tion, is a hybrid checkpoint restart mechanism providing a
loadable Linux kernel module.

Significant research has been conducted to lower the over-
heads in checkpoint restart mechanisms. Oliner et al. [19]
present a cooperative checkpointing approach that reduces
overheads by only writing checkpoints that are predicted to
be useful, e.g., when a failure is likely in the near future.
Incremental checkpointing [1], [16] reduces the size of full
checkpoints taken by periodically saving changes in the ap-

plication data between full checkpoints. Moody et al. [15]
discuss the design and modeling of a scalable multi-level
checkpointing system and recent work [23] uses a combina-
tion of non-blocking and multi-level checkpointing. Guer-
mouche et al. [9] discuss an uncoordinated checkpointing
protocol for send deterministic MPI HPC applications. A
given MPI application is said to be send deterministic, if,
for a set of input parameters, the sequence of sent mes-
sages, for any process, is the same in any correct execution.
AI-Ckpt [18] provides a runtime environment that enables
asynchronous incremental checkpointing. Unlike other C/R
approaches, it leverages both current and past access pat-
tern trends in order to optimize the order in which memory
pages are flushed to stable storage. Scalable Pattern-Based
Checkpointing (SPBC) [24] is a protocol that combines hi-
erarchically coordinated checkpointing and message logging.
Libhashckpt [8] is a hybrid incremental checkpointing so-
lution that utilizes both page protection and hashing on
GPUs to determine changes in application data with very
low overhead. ACR [17] is an automatic checkpoint/restart
framework that performs application replication and auto-
matically adapts the checkpoint period exploiting online in-
formation about the current failure rate. Sarood et al. [22]
discuss a combination of checkpoint/restart and tempera-
ture capping. It uses a runtime managed temperature cap-
ping to increase the estimated reliability of HPC machines
and to reduce the total execution time required by applica-
tions. Algorithm-based fault tolerance (ABFT) techniques
[4], [13] provide a solution for HPC resilience to applications.

We investigated several of these existing checkpoint restart
implementations, but, to the best of our knowledge, none of
these implementations provide affinity awareness as we have
described in this paper.

6. CONCLUSION
In conclusion, this work contributes a novel approach to

incorporate affinity awareness in a checkpoint restart mech-
anism. We have implemented our design in BLCR with min-
imal changes and minimal overheads. Experimental results
with the NPB suite indicate significant performance benefits
over the original BLCR. The affinity-aware BLCR is bound
to result in benefits for affinity sensitive application. We also
discuss an example of an application that is not sensitive to
affinity, namely LULESH. As core pinning does not provide
benefits for LULESH in terms of execution time, using the
affinity-aware BLCR also cannot provide performance im-
provement. Overall, we observe performance improvements
ranging from 37% to 73% in application execution time af-
ter restart for NPB codes and 6-12% for NAMD compared
to using the original BLCR on 16 cores. Without affin-
ity awareness, restarts would have resulted in 1.6 times to
nearly four times longer execution times for NPB. To the
best of our knowledge, we are first to implement such affin-
ity awareness in a checkpoint restart mechanism.

Acknowledgment
This work was supported in part by grants from Lawrence
Berkeley National Laboratory and NSF grant 1058779.

7. REFERENCES
[1] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira.

Adaptive incremental checkpointing for massively

parallel systems. In Proceedings of the 18th annual
international conference on Supercomputing, pages
277–286. ACM, 2004.

[2] J. Ansel, K. Arya, and G. Cooperman. Dmtcp:
Transparent checkpointing for cluster computations
and the desktop. In Parallel & Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium
on, pages 1–12. IEEE, 2009.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, L. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
et al. The nas parallel benchmarks. International
Journal of High Performance Computing Applications,
5(3):63–73, 1991.

[4] Z. Chen. Online-abft: an online algorithm based fault
tolerance scheme for soft error detection in iterative
methods. In Proceedings of the 18th ACM SIGPLAN
symposium on Principles and practice of parallel
programming, pages 167–176. ACM, 2013.

[5] cryopid-devel@lists.berlios.de. Cryopid - a process
freezer for linux. https://github.com/maaziz/cryopid,
2004.

[6] D. Dice, V. J. Marathe, and N. Shavit. Lock
cohorting: A general technique for designing numa
locks. In Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, PPoPP ’12, pages 247–256, New York,
NY, USA, 2012. ACM.

[7] J. Duell. The design and implementation of berkeley
lab’s linux checkpoint/restart. 2005.

[8] K. B. Ferreira, R. Riesen, R. Brighwell, P. Bridges,
and D. Arnold. libhashckpt: hash-based incremental
checkpointing using gpuâĂŹs. In Recent Advances in
the Message Passing Interface, pages 272–281.
Springer, 2011.

[9] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and
F. Cappello. Uncoordinated checkpointing without
domino effect for send-deterministic mpi applications.
In Parallel & Distributed Processing Symposium
(IPDPS), 2011 IEEE International, pages 989–1000.
IEEE, 2011.

[10] H. Jin, M. Frumkin, and J. Yan. The openmp
implementation of nas parallel benchmarks and its
performance. Technical report, Technical Report
NAS-99-011, NASA Ames Research Center, 1999.

[11] L. V. Kale and S. Krishnan. Charm++: A portable
concurrent object oriented system based on c++. In
Proceedings of the Eighth Annual Conference on
Object-oriented Programming Systems, Languages, and
Applications, pages 91–108, 1993.

[12] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain,
J. Cohen, Z. DeVito, R. Haque, D. Laney, E. Luke,
F. Wang, et al. Exploring traditional and emerging
parallel programming models using a proxy
application. In Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium
on, pages 919–932. IEEE, 2013.

[13] D. Li, Z. Chen, P. Wu, and J. S. Vetter. Rethinking
algorithm-based fault tolerance with a cooperative
software-hardware approach. In International
Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2013.

[14] J. Marathe and F. Mueller. Hardware profile-guided
automatic page placement for ccNUMA systems. In
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 90–99, Mar.
2006.

[15] A. Moody, G. Bronevetsky, K. Mohror, and B. R.
De Supinski. Design, modeling, and evaluation of a
scalable multi-level checkpointing system. In High
Performance Computing, Networking, Storage and
Analysis (SC), 2010 International Conference for,
pages 1–11. IEEE, 2010.

[16] N. Naksinehaboon, Y. Liu, C. Leangsuksun,
R. Nassar, M. Paun, and S. L. Scott. Reliability-aware
approach: An incremental checkpoint/restart model in
hpc environments. In Cluster Computing and the
Grid, 2008. CCGRID’08. 8th IEEE International
Symposium on, pages 783–788. IEEE, 2008.

[17] X. Ni, E. Meneses, N. Jain, and L. V. Kalé. Acr:
automatic checkpoint/restart for soft and hard error
protection. In Proceedings of SC13: International
Conference for High Performance Computing,
Networking, Storage and Analysis, page 7. ACM, 2013.

[18] B. Nicolae and F. Cappello. Ai-ckpt: leveraging
memory access patterns for adaptive asynchronous
incremental checkpointing. In Proceedings of the 22nd
international symposium on High-performance parallel
and distributed computing, pages 155–166. ACM, 2013.

[19] A. J. Oliner, L. Rudolph, and R. K. Sahoo.
Cooperative checkpointing: a robust approach to
large-scale systems reliability. In Proceedings of the
20th annual international conference on
Supercomputing, pages 14–23. ACM, 2006.

[20] J. C. Phillips, R. Braun, W. Wang, J. Gumbart,
E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel,
L. Kale, and K. Schulten. Scalable molecular dynamics
with namd. Journal of computational chemistry,
26(16):1781–1802, 2005.

[21] E. Roman. A survey of checkpoint/restart
implementations. In Lawrence Berkeley National
Laboratory, Tech. LBNL, 2002.

[22] O. Sarood, E. Meneses, and L. V. Kale. A

âĂIJcoolâĂİ way of improving the reliability of hpc
machines,âĂİ. In Proceedings of The International
Conference for High Performance Computing,
Networking, Storage and Analysis, 2013.

[23] K. Sato, N. Maruyama, K. Mohror, A. Moody,
T. Gamblin, B. R. de Supinski, and S. Matsuoka.
Design and modeling of a non-blocking checkpointing
system. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage
and Analysis, page 19. IEEE Computer Society Press,
2012.

[24] A. Schiper, F. Cappello, T. Martsinkevich,
A. Guermouche, and T. Ropars. Spbc: Leveraging the
characteristics of mpi hpc applications for scalable
checkpointing. In International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC” 13), number EPFL-CONF-189836,
2013.

[25] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott.
Hybrid checkpointing for mpi jobs in hpc
environments. In Proceedings of the 2010 IEEE 16th

International Conference on Parallel and Distributed
Systems, ICPADS ’10, pages 524–533, Washington,
DC, USA, 2010. IEEE Computer Society.

[26] H. Zhong and J. Nieh. Crak: Linux checkpoint/restart
as a kernel module. Technical report, CUCS-014-01,
Department of Computer Science, Columbia
University, 2001.

